一株防治香蕉枯萎病的短密木霉筛选及代谢物木霉素作用评价
作者:
基金项目:

国家重点研发计划(2019YFD1002003);广西壮族自治区重点研发计划(AB21220030);广西科学院基本科研业务费(2021YBJ704);国家自然科学基金(31860520)


Screening and evaluation of the biocontrol efficacy of a Trichoderma brevicompactum strain and its metabolite trichodermin against banana Fusarium wilt
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由尖孢镰刀菌古巴专化型热带四号小种(Fusarium oxysporum f. sp. cubense tropical race4, FocTR4)引起的香蕉枯萎病(banana Fusarium wilt, BFW)是全世界范围内难以防治的真菌病害,给香蕉产业造成巨大的经济损失。本研究旨在筛选高效拮抗FocTR4的木霉生防菌株,并对其发酵代谢产物进行分离、提纯和鉴定,为香蕉枯萎病的高效生物防治提供重要生防菌株和活性化合物资源。从作物根际土壤中分离出木霉菌株,通过平板对峙培养、发酵液对病原菌孢子萌发及菌丝生长抑制,测试筛选出高效抑制FocTR4的生防木霉菌株;通过构建系统发育树明确生防菌株的分类地位;通过柱色谱法分离纯化菌株发酵液中活性成分,通过核磁共振波谱法(nuclear magnetic resonance spectroscopy, NMR)解析活性成分的结构;通过香蕉苗感病盆栽实验检测生防木霉菌株对香蕉枯萎病的防治效果。结果表明,本研究筛选到了1株拮抗FocTR4的菌株JSHA-CD-1003,平板对峙抑制率为60.6%;发酵液在24 h内能完全抑制FocTR4孢子萌发,7 d内对FocTR4菌丝生长的抑制率为52.6%;基于内转录间隔区(internal transcribed spacer, ITS)和tef1-α基因串联序列构建系统发育树,该菌株鉴定为短密木霉(Trichoderma brevicompactum),通过柱色谱法分离提纯和NMR鉴定单一活性化合物为木霉素(trichodermin),最小抑菌浓度(minimum inhibitory concentration, MIC)为25 μg/mL;盆栽生防实验表明,菌株JSHA-CD-1003发酵液对香蕉枯萎病的叶片黄化防治率为47.4%,球茎褐化防治率为52.0%。因此,JSHA-CD-1003通过产生木霉素有效抑制FocTR4孢子萌发和菌丝生长,对FocTR4引起的香蕉枯萎病具有良好的生物防治效果,是一株具有生防潜力的菌株。

    Abstract:

    The banana Fusarium wilt (BFW) caused by Fusarium oxysporum f. sp. cubense tropical race4 (FocTR4) is difficult to control worldwide, which causes a huge economic losse to banana industry. The purpose of this study was to screen Trichoderma strains with antagonistic activity against FocTR4, to isolate and purify the active compound from the fermentation broth, so as to provide important biocontrol strains and active compound resources. In this work, Trichoderma strains were isolated and screened from the rhizosphere soil of crops, and the strains capable of efficiently inhibiting FocTR4 were screened by plate confrontation, and further confirmed by testing inhibition for the conidial germination and mycelial growth of FocTR4. The phylogenetic tree clarified the taxonomic status of the biocontrol strains. Moreover, the active components in the fermentation broth of the strains were separated and purified by column chromatography, the structure of the most active component was analyzed by nuclear magnetic resonance spectroscopy (NMR), the BFW control effect was tested by pot experiments. We obtained a strain JSHA-CD-1003 with antagonistic activity against FocTR4, and the inhibition rate from plate confrontation was 60.6%. The fermentation broth of JSHA-CD-1003 completely inhibited the germination of FocTR4 conidia within 24 hours. The inhibition rate of FocTR4 hyphae growth was 52.6% within 7 d. A phylogenetic tree was constructed based on the ITS and tef1-α gene tandem sequences, and JSHA-CD-1003 was identified as Trichoderma brevicompactum. Purification and NMR identification showed that the single active compound was trichodermin, and the minimum inhibitory concentration (MIC) was 25 μg/mL. Pot experiments showed that the fermentation broth of strain JSHA-CD-1003 was effective against BFW. The control rate of leaf yellowing was 47.4%, and the rate of bulb browning was 52.0%. Therefore, JSHA-CD-1003 effectively inhibited FocTR4 conidial germination and mycelium growth through producing trichodermin, and showed biocontrol effect on banana wilt caused by FocTR4, thus is a potential biocontrol strain.

    参考文献
    [1] 王振中. 香蕉枯萎病及其防治研究进展[J]. 植物检疫, 2006, 20(3):198-200, F0004. WANG ZZ. Research progress on banana Fusarium wilt and its control[J]. Plant Quarantine, 2006, 20(3):198-200, F0004(in Chinese).
    [2] 苏琴, 谢玲, 陈艳露, 廖仕同, 张艳, 农倩. 香蕉枯萎病生防菌绿头枝孢菌LS1的筛选鉴定[J]. 微生物学通报, 2019, 46(12):3248-3256. SU Q, XIE L, CHEN YL, LIAO ST, ZHANG Y, NONG Q. Screen and identification of biocontrol strain Cladosporium chlorocephalum LS1 against banana Fusarium wilt[J]. Microbiology China, 2019, 46(12):3248-3256(in Chinese).
    [3] PLOETZ RC. Fusarium wilt of banana[J]. Phytopathology, 2015, 105(12):1512-1521.
    [4] 杨静. 香蕉枯萎病菌进化研究和FocTR4致病相关效应蛋白的鉴定及功能分析[D]. 广州:华南农业大学博士学位论文, 2016. YANG J. Studies on the evolution of Fusarium oxysporum f. sp. cubense strains and identification and functional analyses of pathogenicity related effectors from FocTR4[D]. Guangzhou:Doctoral Dissertation of South China Agricultural University, 2016(in Chinese).
    [5] EMMERT ABE, HANDELSMAN J. Biocontrol of plant disease:a (Gram-) positive perspective[J]. FEMS Microbiology Letters, 1999, 172:1-9.
    [6] HUANG YH, WANG RC, LI CH, ZUO CW, WEI YR, ZHANG L, YI GJ. Control of Fusarium wilt in banana with Chinese leek[J]. European Journal of Plant Pathology, 2012, 134(1):87-95.
    [7] 吴元立, 杨乔松, 李春雨, 黄秉智, 董涛, 盛鸥, 毕方铖, 邓贵明, 胡春华, 高慧君, 窦同心, 何维弟, 刘思文, 易干军. 香蕉-尖孢镰刀菌互作机理及抗病育种研究进展[J]. 广东农业科学, 2020, 47(11):32-41. WU YL, YANG QS, LI CY, HUANG BZ, DONG T, SHENG O, BI FC, DENG GM, HU CH, GAO HJ, DOU TX, HE WD, LIU SW, YI GJ. Research progress in the mechanisms of banana-Fusarium oxysporum f. sp. cubense interaction and genetic improvement for resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences, 2020, 47(11):32-41(in Chinese).
    [8] MAXMEN A. CRISPR might be the banana's only hope against a deadly fungus[J]. Nature, 2019, 574(7776):15.
    [9] 王海希, 郝志鹏, 张莘, 谢伟, 陈保冬. 丛枝菌根真菌防治尖孢镰孢枯萎病的效应、机制及其应用研究进展[J]. 微生物学通报, 2022, 49(7):2819-2837. WANG HX, HAO ZP, ZHANG X, XIE W, CHEN BD. Effect, mechanisms and application of arbuscular mycorrhizal fungi for biological control of Fusarium oxysporum-caused wilt:a review[J]. Microbiology China, 2022, 49(7):2819-2837(in Chinese).
    [10] CHEN YF, ZHOU DB, QI DF, GAO ZF, XIE JH, LUO YP. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil[J]. Frontiers in Microbiology, 2018, 8:2704.
    [11] ZHANG L, ZHANG HX, HUANG YT, PENG J, XIE JH, WANG W. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol ling Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4[J]. Frontiers in Microbiology, 2021, 12:763038.
    [12] SINGH P, XIE J, QI YH, QIN QJ, JIN C, WANG B, FANG WX. A thermotolerant marine Bacillus amyloliquefaciens S185 producing iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense[J]. Marine Drugs, 2021, 19(9):516.
    [13] 叶乃玮, 吴紫燕, 干华磊, 王承芳, 毛玮力. 组合木霉菌制剂防治香蕉枯萎病的研究[J]. 中国果树, 2019(2):64-67. YE NW, WU ZY, GAN HL, WANG CF, MAO WL. Study on the control of banana Fusarium wilt with combined Trichoderma preparation[J]. China Fruits, 2019(2):64-67(in Chinese).
    [14] AYYADURAI N, RAVINDRA NAIK P, SREEHARI RAO M, SUNISH KUMAR R, SAMRAT SK, MANOHAR M, SAKTHIVEL N. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana[J]. Journal of Applied Microbiology, 2006, 100(5):926-937.
    [15] HARMAN G, HOWELL CR, VITERBO A, CHET I, LORITO M. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2:43-56.
    [16] HERMOSA R, CARDOZA RE, NICOLÁS C, MONTE E, GUTIÉRREZ S. The contribution of Trichoderma to balancing the costs of plant growth and defense[J]. International Microbiology:the Official Journal of the Spanish Society for Microbiology, 2013, 16(2):69-80.
    [17] MUKHERJEE PK, HORWITZ BA, HERRERA-ESTRELLA A, SCHMOLL M, KENERLEY CM. Trichoderma research in the genome era[J]. Annual Review of Phytopathology, 2013, 51:105-129.
    [18] CHEMELTORIT PP, MUTAQIN KH, WIDODO W. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86:a synergistic chili pepper seed treatment for Phytophthora capsici infested soil[J]. European Journal of Plant Pathology, 2017, 147(1):157-166.
    [19] 杨曦亮, 任梦瑶, 刘倩, 汪超, 王强. 近十年海洋来源木霉属真菌次生代谢产物研究进展[J]. 广西科学, 2021, 28(5):440-450. YANG XL, REN MY, LIU Q, WANG C, WANG Q. Research progress on secondary metabolites from marine-derived Trichoderma sp. in the past decade[J]. Guangxi Sciences, 2021, 28(5):440-450(in Chinese).
    [20] ZHAO DL, ZHANG XF, HUANG RH,WANG D, WANG XQ, LI YQ, ZHENG CJ, ZHANG P, ZHANG CS. Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13[J]. Frontiers in Microbiology, 2020, 26(11):1495.
    [21] SHI ZZ, LIU XH, LI XN, JI NY. Antifungal and antimicroalgal trichothecene sesquiterpenes from the marine algicolous fungus Trichoderma brevicompactum A-DL-9-2[J]. Agricultural and Food Chemistry, 2020, 68(52):15440-15448.
    [22] 赵兴丽, 张金峰, 周玉锋, 赵玳琳, 张莉, 周罗娜, 陶刚. 一株拮抗茶炭疽病菌的木霉菌的分离、筛选及鉴定[J]. 茶叶科学, 2019, 39(4):431-439. ZHAO XL, ZHANG JF, ZHOU YF, ZHAO DL, ZHANG L, ZHOU LN, TAO G. Isolation, screening and identification of a strain of Trichoderma antagonizing tea anthracnose[J]. Journal of Tea Science, 2019, 39(4):431-439(in Chinese).
    [23] 侯捷, 唐春萍, 沈志滨, 陈艳芬, 丁慎, 张祉思, 李小英, 江涛. 异黄绵马酸PB对红色毛癣菌生物被膜黏附及甾醇代谢相关酶基因表达的影响[J]. 中国药房, 2021, 32(5):584-589. HOU J, TANG CP, SHEN ZB, CHEN YF, DING S, ZHANG ZS, LI XY, JIANG T. Effects of isoflavaspidic acid PB on the biofilm adhesion and gene expression of ergosterol metabolism related enzymes in Trichophyton rubrum[J]. China Pharmacy, 2021, 32(5):584-589(in Chinese).
    [24] TAN DG, FU LL, HAN BY, SUN XP, ZHENG P, ZHANG JM. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt[J]. PLoS One, 2015, 10(7):e0131974.
    [25] 陈书华, 李梅, 蒋细良, 衣涛, 张念洁, 汪浩, 白龙律. 防治人参锈腐病木霉菌的筛选及防治效果[J]. 中国生物防治学报, 2016, 32(2):265-269. CHEN SH, LI M, JIANG XL, YI T, ZHANG NJ, WANG H, BAI LL. Selection of Trichoderma spp. antagonistic to Cylindrocarpon destructans, pathogen of ginseng root rot disease[J]. Chinese Journal of Biological Control, 2016, 32(2):265-269(in Chinese).
    [26] WHITE TJ, BRUNS T, LEE S, TAYLOR J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics[M]. PCR Protocols. Amsterdam:Elsevier, 1990:315-322.
    [27] JAKLITSCH WM, SAMUELS GJ, ISMAIEL A, VOGLMAYR H. Disentangling the Trichodermaviridescens complex[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 31(1):112-146.
    [28] BRIC JM, BOSTOCK RM, SILVERSTONE SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane[J]. Applied and Environmental Microbiology, 1991, 57(2):535-538.
    [29] GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796.
    [30] SCHWYN B, NEILANDS JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56.
    [31] DEY R, PAL KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria[J]. Microbiological Research. 2004, 159:371-394.
    [32] 谢津. 黑老虎轮斑病的病原鉴定和毒素成分分析及病害防治研究[D]. 南宁:广西大学博士学位论文, 2020. XIE J. Pathogen identification, toxin composition analysis and disease control of black tiger ring spot disease[D]. Nanning:Doctoral Dissertation of Guangxi University, 2020(in Chinese).
    [33] J. L. Rodriguez Tudela. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds[J]. Clinical Microbiology and Infection, 2008, 14(10):982-984.
    [34] WEI YY, ZHAO YK, ZHOU DB, QI DF, LI K, TANG W, CHEN YF, JING T, ZANG X, XIE JH, WANG W. A newly isolated Streptomyces sp. YYS-7 with a broad-spectrum antifungal activity improves the banana plant resistance to Fusarium oxysporum f. sp. cubense tropical race 4[J]. Frontiers in Microbiology, 2020, 11:1712.
    [35] FAN H, LI S, ZENG L, HE P, XU ST, BAI TT, HUANG YL, GUO ZX, ZHENG SJ. Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 using natively isolated Bacillus spp. YN0904 and YN1419[J]. Journal of Fungi (Basel, Switzerland), 2021, 7(10):795.
    [36] 左存武, 李斌, 李春雨, 魏岳荣, 胡春华, 邓贵明, 邝瑞彬, 杨乔松, 易干军. 香蕉对尖孢镰刀菌热带4号小种的抗性评价方法的建立[J]. 园艺学报, 2016, 43(5):876-884. ZUO CW, LI B, LI CY, WEI YR, HU CH, DENG GM, KUANG RB, YANG QS, YI GJ. Establishment of resistance evaluation system of banana to Fusarium oxysporum f. sp. cubense tropical race 4[J]. Acta Horticulturae Sinica, 2016, 43(5):876-884(in Chinese).
    [37] YANG ZS, LI GH, ZHAO PJ, ZHENG X, LUO SL, LI L, NIU XM, ZHANG KQ. Nematicidal activity of Trichoderma spp. and isolation of an active compound[J]. World Journal of Microbiology and Biotechnology, 2010, 26:2297-2302.
    [38] SHENTU X, ZHAN X, MA Z, YU XP, ZHANG CX. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic[J]. Brazilian Journal of Microbiology, 2014, 45(1):248-54.
    [39] TIJERINO A, HERMOSA R, CARDOZA RE, MORAGA J, MALMIERCA MG, ALEU J, COLLADO IG, MONTE E, GUTIERREZ S. Overexpression of the Trichoderma brevicompactum tri5 gene:effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings[J]. Toxins (Basel). 2011, 3(9):1220-1232.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚遐俊,谢津,祁艳华,汪斌,房文霞,陶刚,蒋细良. 一株防治香蕉枯萎病的短密木霉筛选及代谢物木霉素作用评价[J]. 生物工程学报, 2024, 40(1): 211-225

复制
分享
文章指标
  • 点击次数:268
  • 下载次数: 914
  • HTML阅读次数: 579
  • 引用次数: 0
历史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-05-22
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-25
文章二维码
您是第6000931位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司